Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.
Добавить свой комментарий
Аннотация к презентации
Презентация к занятию по химии на тему " Алкены. Строение. Изомерия. Химические свойства" поможет учителю в проведении комбинированного урока. В разработку включен материал ко всем этапам. В краткой и доступной форме изложена информация о номенклатуре и изомерии, строении алкенов, их химических и физических свойствах.
ГОУ СОШ №277 Кировского района г. Санкт-Петербурга
Елена Викторовна Переверзева
Слайд 2
Элементный анализ этилена показывает, что в его состав входят примерно 87,5% углерода и 14,3% водорода. Плотность этилена по отношению к водороду равна 14.
Решим задачу на нахождение молекулярной формулы органического вещества по массовым долям элементов и относительной плотности паров этого вещества.
Составим структурную формулу искомого вещества.
Слайд 3
Алкены (олефины, этилены)
Непредельные углеводороды, в молекулах которых содержится одна двойная связь.
Общая формула гомологического ряда алкенов
CnH2n.
Слайд 4
Строение молекул алкенов
Атомы углерода при двойной связи находятся в sp2-гибридизации и между ними образуется двойная связь, состоящая из π-связи и σ-связи.
Длина двойной связи – 0,134 нм.
Все валентные углы НСН близки к 120º.
Слайд 5
Изомерия и номенклатура
СТРУКТУРНАЯ
ПРОСТРАНСТВЕННАЯ
ИЗОМЕРИЯ
Слайд 6
Тестовое задание № 1:
1. Ациклические углеводороды, в молекулах которых содержится одна двойная связь, называются
А) алканы Б) алкены В) алкины Г) арены.
2. Для алкенов характерна изомерия
А) углеродного скелета Б) положения кратной связи
В) геометрическая Г) все ответы верны.
3. Формула 2,3-диметилпентена-1
А) СН2=СН−СН2−СН2−СН3 Б) СН3−С=С−СН2−СН3
| | |
СН3 Н3С СН3
В) СН3−СН2−СН2−СН2−СН3 Г) СН2=С−СН−СН2−СН3
| | | |
Н3С СН3 Н3С СН3
Слайд 7
Химические свойства
\ σ / \ σ /
C==C + A—B → C — C
/ π \ / | | \
А В
Алкены вступают в реакции электрофильного присоединения.
При химической реакции π- связь легко разрывается и по линии разрыва происходит присоединение атомов или групп атомов.
Слайд 8
Реакции присоединения
Присоединение водорода:
Н2С=СН2 + H2 → Н3С—СН3
Присоединение галогенов:
Н2С=СН2 + Cl2 → ClH2C—CH2Cl
Присоединение галогеноводородов:
H2С=СН2 + НВr → Н3С—CH2Вr
Присоединение воды (реакция гидратации):
H2С=СН2 + Н2О → Н3С—CH2ОН
Слайд 9
Правило В.В. Марковникова
Водород галогенводорода присоединяется к более гидрогенизированному атому углерода при двойной связи, а галоген – к менее гидрогенизированному.
H3C—CH=CH2 + H—Br → H3C—CH—CH3
|
Br
Реакция идет по ионному механизму.
Слайд 10
Реакции окисления
Горение:
Н2С=СН2 + 3O2 → 2СO2 + 2Н2O
Окисление перманганатом калия:
3H2C=CH2 + 2KMnO4 + 4H2O →
→ 3CH2—CH2 + 2MnO2 + KOH
| |
OHOH
Частичное окисление :
350°C, Ag
2Н2С=СН2 + O2 → 2Н2С — СН2
\ /
О
Слайд 11
Реакция полимеризации
Процесс соединения многих одинаковых молекул в более крупные молекулы называется реакцией полимеризации.
Слайд 12
Тестовое задание № 2:
1. Реакция присоединения водорода называется
А) гидрирование Б) гидрогалогенирование
В) гидратация В) дегидрирование
2. В реакции бромированияпропена образуется
А) 1,3-дибромпропан Б) 1-бромпропан
В) 2-бромпропан Г) 1,2-дибромпропан
3. Сумма коэффициентов в уравнении горения пропена равно:
А) 11 Б) 15 В) 21 Г) 23
4. При гидрогалогенированииалкенов атом водорода присоединяется к … гидрированному атому углерода, а атом галогена – к … гидрированному.
А) более Б) менее
Слайд 13
Получение алкенов
Дегидратация спиртов:
H2SO4
H−CH2−CH2−OH→ CH2=CH2 + H2O
Из галогеналканов:
H−CH2−CH2−Br + KOHсп. р-р → СH2=CH2 + KBr + H2O
Крекинг алканов:t
С8Н18→ С4Н10 + С4Н8
Дегидрирование алканов:
t, Cr2O3
H−CH2−CH2−H → CH2=CH2 + H2
Слайд 14
Тестовое задание № 3:
1. Бутен можно получить крекингом:
А) бутана Б) пентана В) гексана Г) октана
2. Какие признаки характеризуют физические свойства этена: 1) бесцветная жидкость, 2) имеет резкий запах, 3) бесцветный газ, 4) немного легче воздуха, 5) почти без запаха, 6) плохо растворим в воде, 7) не горит, 8) с воздухом образует взрывоопасные смеси?
А) 3,4,5,6,8 Б) 1,2,6,7 В) 2,3,4,6,8 Г) 3,4,6,8
3. Плотность паров алкена по водороду равна 49. Массовая доля углерода в нём – 85,71%, массовая доля водорода – 14,29%. Молекулярная формула этого углеводорода
А) С5Н10 Б) С6Н12 В) С7Н14 Г) С8Н16
Слайд 15
Выводы
Алкены – непредельные углеводороды, в молекулах которых имеется одна двойная связь. Атомы углерода находятся в состоянии sp2- гибридизации. Общая формула – СnH2n. В названии алкенов используется суффикс –ен.
Для алкенов характерны: изомерия углеродной цепи, изомерия положения двойной связи, пространственная (геометрическая) и изомерия между классами.
Алкены обладают большой химической активностью. За счёт наличия π-связи алкены вступают в реакции присоединения, окисления, полимеризации.
Посмотреть все слайды
Конспект
Химия 10 класс. Разработка Переверзевой Елены Викторовны.
Тип урока: урок изучения и первичного закрепления нового материала.
Цели урока: создать условия для формирования знаний об алкенах как классе непредельных углеводородов, об особенностях их электронного строения и изомерии, физико-химических свойствах и способах получения.
Задачи урока:
Обучающие: изучить алкены как самостоятельный класс непредельных углеводородов, развивая знания о кратной двойной связи между атомами углерода; рассмотреть гомологию, изомерию и номенклатуру алкенов; изучить химические свойства алкенов, взаимное влияние атомов в молекуле на примере этилена и пропилена, правило Марковникова, познакомить с промышленными и лабораторными способами получения.
Развивающие: способствовать развитию логического мышления и интеллектуальных умений (анализировать, сравнивать, устанавливать причинно-следственные связи).
Воспитательные: продолжить формирование культуры умственного труда; коммуникационных навыков: прислушиваться к чужому мнению, доказывать свою точку зрения, находить компромиссы.
Методы обучения: словесные (беседа, проблемное изложение); эвристические (письменные и устные упражнения, решение задач, тестовые задания); наглядные (мультимедийное наглядное пособие).
Средства обучения: реализация внутри- и межпредметных связей, мультимедийное наглядное пособие (презентация), алгоритм решения задач и составления названий алкенов различного строения.
Технологии: элементы педагогики сотрудничества, личностно-ориентированного обучения (компетентностно-ориентированное обучение, гуманно-личностная технология, индивидуальный и дифференцированный подход), информационно-коммуникативной технологии, здоровьесберегающих образовательных технологий (организационно-педагогическая технология).
Краткое описание хода урока.
I. Организационный этап: взаимные приветствия педагога и учащихся; проверка подготовленности учащихся к уроку; организация внимания и настрой на урок.
Сообщение темы и задач изучения нового материала; показ его практической значимости.
II. Изучение нового материала:
Решение задачи на нахождение молекулярной формулы органического вещества по массовым долям элементов и относительной плотности паров этого вещества. (Слайд 2)
Элементный анализ этилена показывает, что в его состав входят примерно 87,5% углерода и 14,3% водорода. Плотность этилена по отношению к водороду равна 14.
Дано:
(C) = 85,7% (или 0,857)
(Н) = 14,3% (или 0,143)
D(H2) CxHy = 14
Алкены, или олефины, этиленовые — непредельные углеводороды, в молекулах которых между углеродными атомами имеется одна двойная связь. (Слайд 3) Алкены содержат в своей молекуле меньшее число водородных атомов, чем соответствующие им алканы (с тем же числом углеродных атомов), поэтому такие углеводороды называют непредельными или ненасыщенными. Алкены образуют гомологический ряд с общей формулой CnH2n.
Простейшим представителем этиленовых углеводородов, его родоначальником является этилен (этен) С2Н4. Строение его молекулы можно выразить такими формулами:
H H H H
| | : :
C==C C::C
| | : :
H H H H
По названию первого представителя этого ряда такие углеводороды называют этиленовыми.
В алкенах атомы углерода находятся во втором валентном состоянии (sр2-гибридизация). (Слайд 4) В этом случае между углеродными атомами возникает двойная связь, состоящая из одной s- и одной p-связи. Длина и энергия двойной связи равны соответственно 0,134 нм и 610 кДж/моль. Все валентные углы НСН близки к 120º.
Для алкенов характерны два вида изомерии: структурная и пространственная. (Слайд 5)
Виды структурной изомерии:
изомерия углеродного скелета
,
изомерия положения двойной связи
,
межклассовая изомерия
.
Геометрическая изомерия — один из видов пространственной изомерии. Изомеры, у которых одинаковые заместители (при разных углеродных атомах) расположены по одну сторону от двойной связи, называют цис-изомерами, а по разную — транс-изомерами:
.
По систематической номенклатуре названия алкенов производят заменой суффикса -ан в соответствующих алканах на суффикс -ен (алкан — алкен, этан — этен, пропан — пропен и т.д.). Выбор главной цепи и порядок названия тот же, что и для алканов. Однако в состав цепи должна обязательно входить двойная связь. Нумерацию цепи начинают с того конца, к которому ближе расположена эта связь. Например:
СH3
|
H3C—CH2—C—CH==CH2 H3C—C==CH—CH—CH2—CH3
| | |
CH3 CH3 CH3
3,3-диметилпентен-1 2,4-диметилгексен-2
(Слайд 6: Выполнение тестового задания № 1 для закрепления навыков составления структурных формул изомеров.)
Этиленовые обладают большей химической активностью, чем предельные углеводороды. (Слайд 7)
(Проблема: От чего зависит химическая активность алкенов?)
Химические свойства алкенов определяются двойной углерод-углеродной связью. π-Связь, как наименее прочная и более доступная, при действии реагента разрывается, а освободившиеся валентности углеродных атомов затрачиваются на присоединение атомов, из которых состоит молекула реагента. Это можно представить в виде схемы:
\ π / \ /
C==C + A—B → C—C
/ σ \ / | σ | \
А В
Для алкенов характерны реакции присоединения, окисления, полимеризации. Реакции присоединения. (Слайд 8) Чаще реакции присоединения идут по гетеролитическому типу, являясь реакциями электрофильного присоединения.
Легче идет присоединение хлора и брома, труднее — иода. Фтор с алкенами, как и с алканами, взаимодействует со взрывом. Присоединение брома к алкенам (реакция бромирования) — качественная реакция на непредельные углеводороды. При пропускании через бромную воду непредельных углеводородов желтая окраска исчезает.
Проблема: Как пойдёт присоединение бромоводорода к гомологам этилена несимметричного строения, например к пропилену?
(Слайд 9) Присоединение галогенводородов к гомологам этилена идет по правилу В.В.Марковникова: при обычных условиях водород галогенводорода присоединяется по месту двойной связи к наиболее гидрогенизированному атому углерода при двойной связи, а галоген — к менее гидрогенизированному. Правило Марковникова можно объяснить тем, что у несимметричных алкенов (например, в пропилене) электронная плотность распределена неравномерно.
СН3−HСδ+=Сδ−Н2 + Н+Вr − → Н3С—CHВr−СН3
Реакция идет по ионному механизму.
Правило Марковникова соблюдается при присоединении к несимметричным алкенам и других электрофильных реагентов (H2O, H2SО4, НСl и др.).
Присоединение воды (реакция гидратации):
H3C—CH=CH2 + H—OH → H3C—CH—CH3
|
OH
Реакции окисления. (Слайд 10) Алкены окисляются легче, чем алканы. Продукты, образованные при окислении алкенов, и их строение зависят от строения алкенов и от условий проведения реакции.
Горение: Н2С=СН2 + 3O2 → 2СO2 + 2Н2O
При действии на этилен водного раствора КМnO4 (при нормальных условиях) происходит образование двухатомного спирта — этиленгликоля:
Эта реакция является качественной: фиолетовая окраска раствора перманганата калия изменяется при добавлении к нему непредельного соединения.
Этиленгликоль используется в качестве антифриза, из него получают волокно лавсан, взрывчатые вещества.
В более жестких условиях (окисление КМnO4 в присутствии серной кислоты или хромовой смесью) в алкене происходит разрыв двойной связи с образованием кислородсодержащих продуктов: H3C—CH=CH—CH3 + 2O2 → 2H3C—COOH
Окислениеэтена на серебряном катализаторе дает оксид этилена:
Ag, 350°C
2Н2С=СН2 + O2 → 2Н2С—СН2
\ /
О
Из оксида этилена получают уксусный альдегид, моющие средства, лаки, пластмассы, каучуки и волокна, косметические средства.
Проблема: Могут ли молекулы этилена и его гомологи взаимодействовать друг с другом?
Реакция полимеризации. (Слайд 11)
Процесс соединения многих одинаковых молекул в более крупные называется реакцией полимеризации.
Алкены широко используются в качестве мономеров для получения многих высокомолекулярных соединений (полимеров).
Реакция изомеризации. При нагревании или в присутствии катализаторов алкены способны изомеризоваться — происходит перемещение двойной связи или установление изостроения.
(Слайд 12: Выполнение тестового задания № 2 для отработки умений в написании уравнений химических реакций.)
В природе алкены встречаются редко. Алкены – этен, пропен и бутен – при обычных условиях (20 °С, 1 атм) – газы, от С5Н10 до С18Н36 – жидкости, высшие алкены – твердые вещества. Алкены нерастворимы в воде, хорошо растворимы в органических растворителях.
Обычно газообразные алкены выделяют из газов нефтепереработки (при крекинге) или попутных газов, а также из газов коксования угля.
В промышленности алкены получают дегидрированием алканов в присутствии катализатора.
Из лабораторных способов получения можно отметить следующие:
Из галогенопроизводных алканов:
.
2. Дегидратация спиртов (отщепление воды). В качестве катализатора используют кислоты (серную или фосфорную) или А12O3 (в таких реакциях водород отщепляется от наименее гидрогенизированного (с наименьшим числом водородных атомов) углеродного атома (правило А.М.Зайцева):
(Слайд 14: Выполнение тестового задания № 3 для обобщения знаний по изученному материалу.)
III. Выводы:
Алкены – непредельные углеводороды, в молекулах которых имеется одна двойная связь. Атомы углерода находятся в состоянии sp2- гибридизации. Общая формула – СnH2n. В названии алкенов используется суффикс –ен.
Для алкенов характерны: изомерия углеродной цепи, изомерия положения двойной связи, пространственная (геометрическая) и изомерия между классами.
Алкены обладают большой химической активностью. За счёт наличия π-связи алкены вступают в реакции присоединения, окисления, полимеризации.
IV. Домашнее задание: § 12, № 3
V. Литература:
1. О.С. Габриелян и др. Химия 10 М.: Дрофа 2002
2. О.С. Габриелян, И.Г.Остроумов, Е.Е. Остроумова Органическая химия в тестах, задачах, упражнениях 10 М.: Дрофа 2003
3. В.Б. Воловик, Е.Д. Крутецкая Органическая химия упражнения и задачи СПб: Оракул 1999
4. А.К. Лёвкин, А.А. Карцова Школьная химия самое необходимое СПб Аволон Азбука-классика 2004
Химия 10 класс. Разработка Переверзевой Елены Викторовны.
Тип урока: урок изучения и первичного закрепления нового материала.
Цели урока: создать условия для формирования знаний об алкенах как классе непредельных углеводородов, об особенностях их электронного строения и изомерии, физико-химических свойствах и способах получения.
Задачи урока:
Обучающие: изучить алкены как самостоятельный класс непредельных углеводородов, развивая знания о кратной двойной связи между атомами углерода; рассмотреть гомологию, изомерию и номенклатуру алкенов; изучить химические свойства алкенов, взаимное влияние атомов в молекуле на примере этилена и пропилена, правило Марковникова, познакомить с промышленными и лабораторными способами получения.
Развивающие: способствовать развитию логического мышления и интеллектуальных умений (анализировать, сравнивать, устанавливать причинно-следственные связи).
Воспитательные: продолжить формирование культуры умственного труда; коммуникационных навыков: прислушиваться к чужому мнению, доказывать свою точку зрения, находить компромиссы.
Методы обучения: словесные (беседа, проблемное изложение); эвристические (письменные и устные упражнения, решение задач, тестовые задания); наглядные (мультимедийное наглядное пособие).
Средства обучения: реализация внутри- и межпредметных связей, мультимедийное наглядное пособие (презентация), алгоритм решения задач и составления названий алкенов различного строения.
Технологии: элементы педагогики сотрудничества, личностно-ориентированного обучения (компетентностно-ориентированное обучение, гуманно-личностная технология, индивидуальный и дифференцированный подход), информационно-коммуникативной технологии, здоровьесберегающих образовательных технологий (организационно-педагогическая технология).
Краткое описание хода урока.
I. Организационный этап: взаимные приветствия педагога и учащихся; проверка подготовленности учащихся к уроку; организация внимания и настрой на урок.
Сообщение темы и задач изучения нового материала; показ его практической значимости.
II. Изучение нового материала:
Решение задачи на нахождение молекулярной формулы органического вещества по массовым долям элементов и относительной плотности паров этого вещества. (Слайд 2)
Элементный анализ этилена показывает, что в его состав входят примерно 87,5% углерода и 14,3% водорода. Плотность этилена по отношению к водороду равна 14.
Дано:
(C) = 85,7% (или 0,857)
(Н) = 14,3% (или 0,143)
D(H2) CxHy = 14
Алкены, или олефины, этиленовые — непредельные углеводороды, в молекулах которых между углеродными атомами имеется одна двойная связь. (Слайд 3) Алкены содержат в своей молекуле меньшее число водородных атомов, чем соответствующие им алканы (с тем же числом углеродных атомов), поэтому такие углеводороды называют непредельными или ненасыщенными. Алкены образуют гомологический ряд с общей формулой CnH2n.
Простейшим представителем этиленовых углеводородов, его родоначальником является этилен (этен) С2Н4. Строение его молекулы можно выразить такими формулами:
H H H H
| | : :
C==C C::C
| | : :
H H H H
По названию первого представителя этого ряда такие углеводороды называют этиленовыми.
В алкенах атомы углерода находятся во втором валентном состоянии (sр2-гибридизация). (Слайд 4) В этом случае между углеродными атомами возникает двойная связь, состоящая из одной s- и одной p-связи. Длина и энергия двойной связи равны соответственно 0,134 нм и 610 кДж/моль. Все валентные углы НСН близки к 120º.
Для алкенов характерны два вида изомерии: структурная и пространственная. (Слайд 5)
Виды структурной изомерии:
изомерия углеродного скелета
,
изомерия положения двойной связи
,
межклассовая изомерия
.
Геометрическая изомерия — один из видов пространственной изомерии. Изомеры, у которых одинаковые заместители (при разных углеродных атомах) расположены по одну сторону от двойной связи, называют цис-изомерами, а по разную — транс-изомерами:
.
По систематической номенклатуре названия алкенов производят заменой суффикса -ан в соответствующих алканах на суффикс -ен (алкан — алкен, этан — этен, пропан — пропен и т.д.). Выбор главной цепи и порядок названия тот же, что и для алканов. Однако в состав цепи должна обязательно входить двойная связь. Нумерацию цепи начинают с того конца, к которому ближе расположена эта связь. Например:
СH3
|
H3C—CH2—C—CH==CH2 H3C—C==CH—CH—CH2—CH3
| | |
CH3 CH3 CH3
3,3-диметилпентен-1 2,4-диметилгексен-2
(Слайд 6: Выполнение тестового задания № 1 для закрепления навыков составления структурных формул изомеров.)
Этиленовые обладают большей химической активностью, чем предельные углеводороды. (Слайд 7)
(Проблема: От чего зависит химическая активность алкенов?)
Химические свойства алкенов определяются двойной углерод-углеродной связью. π-Связь, как наименее прочная и более доступная, при действии реагента разрывается, а освободившиеся валентности углеродных атомов затрачиваются на присоединение атомов, из которых состоит молекула реагента. Это можно представить в виде схемы:
\ π / \ /
C==C + A—B → C—C
/ σ \ / | σ | \
А В
Для алкенов характерны реакции присоединения, окисления, полимеризации. Реакции присоединения. (Слайд 8) Чаще реакции присоединения идут по гетеролитическому типу, являясь реакциями электрофильного присоединения.
Легче идет присоединение хлора и брома, труднее — иода. Фтор с алкенами, как и с алканами, взаимодействует со взрывом. Присоединение брома к алкенам (реакция бромирования) — качественная реакция на непредельные углеводороды. При пропускании через бромную воду непредельных углеводородов желтая окраска исчезает.
Проблема: Как пойдёт присоединение бромоводорода к гомологам этилена несимметричного строения, например к пропилену?
(Слайд 9) Присоединение галогенводородов к гомологам этилена идет по правилу В.В.Марковникова: при обычных условиях водород галогенводорода присоединяется по месту двойной связи к наиболее гидрогенизированному атому углерода при двойной связи, а галоген — к менее гидрогенизированному. Правило Марковникова можно объяснить тем, что у несимметричных алкенов (например, в пропилене) электронная плотность распределена неравномерно.
СН3−HСδ+=Сδ−Н2 + Н+Вr − → Н3С—CHВr−СН3
Реакция идет по ионному механизму.
Правило Марковникова соблюдается при присоединении к несимметричным алкенам и других электрофильных реагентов (H2O, H2SО4, НСl и др.).
Присоединение воды (реакция гидратации):
H3C—CH=CH2 + H—OH → H3C—CH—CH3
|
OH
Реакции окисления. (Слайд 10) Алкены окисляются легче, чем алканы. Продукты, образованные при окислении алкенов, и их строение зависят от строения алкенов и от условий проведения реакции.
Горение: Н2С=СН2 + 3O2 → 2СO2 + 2Н2O
При действии на этилен водного раствора КМnO4 (при нормальных условиях) происходит образование двухатомного спирта — этиленгликоля:
Эта реакция является качественной: фиолетовая окраска раствора перманганата калия изменяется при добавлении к нему непредельного соединения.
Этиленгликоль используется в качестве антифриза, из него получают волокно лавсан, взрывчатые вещества.
В более жестких условиях (окисление КМnO4 в присутствии серной кислоты или хромовой смесью) в алкене происходит разрыв двойной связи с образованием кислородсодержащих продуктов: H3C—CH=CH—CH3 + 2O2 → 2H3C—COOH
Окислениеэтена на серебряном катализаторе дает оксид этилена:
Ag, 350°C
2Н2С=СН2 + O2 → 2Н2С—СН2
\ /
О
Из оксида этилена получают уксусный альдегид, моющие средства, лаки, пластмассы, каучуки и волокна, косметические средства.
Проблема: Могут ли молекулы этилена и его гомологи взаимодействовать друг с другом?
Реакция полимеризации. (Слайд 11)
Процесс соединения многих одинаковых молекул в более крупные называется реакцией полимеризации.
Алкены широко используются в качестве мономеров для получения многих высокомолекулярных соединений (полимеров).
Реакция изомеризации. При нагревании или в присутствии катализаторов алкены способны изомеризоваться — происходит перемещение двойной связи или установление изостроения.
(Слайд 12: Выполнение тестового задания № 2 для отработки умений в написании уравнений химических реакций.)
В природе алкены встречаются редко. Алкены – этен, пропен и бутен – при обычных условиях (20 °С, 1 атм) – газы, от С5Н10 до С18Н36 – жидкости, высшие алкены – твердые вещества. Алкены нерастворимы в воде, хорошо растворимы в органических растворителях.
Обычно газообразные алкены выделяют из газов нефтепереработки (при крекинге) или попутных газов, а также из газов коксования угля.
В промышленности алкены получают дегидрированием алканов в присутствии катализатора.
Из лабораторных способов получения можно отметить следующие:
Из галогенопроизводных алканов:
.
2. Дегидратация спиртов (отщепление воды). В качестве катализатора используют кислоты (серную или фосфорную) или А12O3 (в таких реакциях водород отщепляется от наименее гидрогенизированного (с наименьшим числом водородных атомов) углеродного атома (правило А.М.Зайцева):
(Слайд 14: Выполнение тестового задания № 3 для обобщения знаний по изученному материалу.)
III. Выводы:
Алкены – непредельные углеводороды, в молекулах которых имеется одна двойная связь. Атомы углерода находятся в состоянии sp2- гибридизации. Общая формула – СnH2n. В названии алкенов используется суффикс –ен.
Для алкенов характерны: изомерия углеродной цепи, изомерия положения двойной связи, пространственная (геометрическая) и изомерия между классами.
Алкены обладают большой химической активностью. За счёт наличия π-связи алкены вступают в реакции присоединения, окисления, полимеризации.
IV. Домашнее задание: § 12, № 3
V. Литература:
1. О.С. Габриелян и др. Химия 10 М.: Дрофа 2002
2. О.С. Габриелян, И.Г.Остроумов, Е.Е. Остроумова Органическая химия в тестах, задачах, упражнениях 10 М.: Дрофа 2003
3. В.Б. Воловик, Е.Д. Крутецкая Органическая химия упражнения и задачи СПб: Оракул 1999
4. А.К. Лёвкин, А.А. Карцова Школьная химия самое необходимое СПб Аволон Азбука-классика 2004
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.