Содержание
-
НИПКиПРОКАФЕДРА МАТЕМАТИЧЕСКОГО ОБРАЗОВАНИЯ
Проект урока по теме: «Построение графика функции методом ее исследования с помощью производной» г. Новосибирск 2008 5klass.net
-
учитель математики первой квалификационной категории МОУ лицей № 176 Ткаченко Зоя Васильевна
доцент кафедры математического образования Батан Любовь Федоровна Автор: Научный руководитель:
-
Аннотация
Урок алгебры рекомендован для учащихся 10 класса, обучающихся по учебнику «Алгебра и математический анализ» для углубленного изучения математики в общеобразовательных учреждениях авторовН. Я. Виленкин, О. С. Ивашев-Мусатов, С. И. Шварцбурд. Программа соответствует обязательному минимуму среднего (полного) общего образования. Приказ №56 от 30. 06. 1999г. Издательство МНЕМОЗИНА Москва 2005
-
Актуальность
Данная тема является очень важной и значимой, т. к. в материалах ЕГЭ большое внимание уделяется заданиям, связанным с исследованием функции с помощью графика, с построением графика заданной функции. Успешное изучение этой темы поможет вам хорошо сдать государственный экзамен по математике.
-
Тип урока
Урок закрепления изученного материала в форме самостоятельной групповой работы по карточкам Оборудование: Smart-доска; Сканер; Персональный компьютер; Карточка с заданием на каждой парте.
-
Цели урока
Для учителя Для ученика
-
Обобщить и закрепить свои знания и умения при построении графика функции с помощью ее исследования. Применить (ИКТ) новые информационные технологии для проверки результатов построения с помощью программы MathCAD Воспитывать такие качества личности, как познавательная активность, самостоятельность, упорство в достижении цели
-
Цели урока
Систематизировать, обобщить и расширить знания и умения учащихся при построении графиков функций. Развивать умения наблюдать, сравнивать, обобщать и анализировать математические ситуации с использованием ИКТ и программы MathCAD. Воспитывать такие качества личности, как познавательная активность, самостоятельность, упорство в достижении цели, коммуникативную и информационную культуру. Побуждать учеников к самоконтролю, взаимоконтролю и самоанализу своей деятельности.
-
Задачи урока
Формировать устойчивый интерес к математике через дифференцированный подход к учащимся. Вовлекать каждого ученика в процесс активного учения через интерактивные методы обучения. Развивать познавательный интерес, графическую культуру, культуру речи, память, самостоятельность мышления.
-
Содержание урока Вводная беседа. Устная работа. Самостоятельная работа в группах. Обобщение. Итог. Историческая справка. Рефлексия.
-
На уроке мы должны закрепить и обобщить свои знания и умения при построении графика функции с помощью производной и убедиться в правильности своего построения с помощью программы MathCAD. Вводная беседа
-
Устная работа
Задача1. По графику функции y=f(x), изображенному на рисунке, определить точки, в которых: а e d c b y x – Производная функции не существует: x = e; x = b; x = d; x = 0.
-
Устная работа Задача1. По графику функции y=f(x), изображенному на рисунке, определить точки, в которых: а e d c b y x – Производная функции обращается в ноль: x = b, x = d; x = c, x = a; x = b, x = e, x = d; x = e.
-
Устная работа
Задача1. По графику функции y=f(x), изображенному на рисунке, определить: а e d c b y x – Точки максимума функции: x = e; x = b; x = b, x = e; нет точек максимума.
-
Задача1. По графику функции y=f(x), изображенному на рисунке, определить: а e d c b y x – промежутки убывания функции: [b;d] и [e;+∞); (-∞;b] и [d;e].
-
Задача1. По графику функции y=f(x), изображенному на рисунке, определить: а e d c b y x – Промежутки возрастания функции: [b;d] и [e;+∞); (-∞;b] и [d;e].
-
Отлично!
Далее
-
Подумай ещё!
-
Отлично!
Далее
-
Подумай ещё!
-
Отлично!
Далее
-
Подумай ещё!
-
Отлично!
Далее
-
Подумай ещё!
-
Отлично!
Далее
-
Подумай ещё!
-
Устная работа
Задача2. На рисунке изображен график производной функции y=f(x)на промежутке (-5;6). -5 х 1 6 5 2 -1 у Сколько экстремумов имеет функция на этом промежутке? 3 4 6 1 Правильный ответ
-
Правильный ответ
3
-
Устная работа
Задача2. На рисунке изображен график производной функции y=f(x)на промежутке (-5;6). -5 х 1 6 5 2 -1 у -назвать промежутки возрастания функции: [-1;2] и [5;6) [3;6) и [-2;1] (-5;-4] Правильный ответ
-
Правильный ответ
[-1;2] и [5;6)
-
Устная работа
На рисунке изображен график производной функции y=f(x)на промежутке (-5;6). -5 х 1 6 5 2 -1 у Назвать промежутки убывания функции: [-1;2] и [5;6) [3;6) и [-2;1] (-5;-1] и [2;5] Правильный ответ
-
Правильный ответ
(-5;-1] и [2;5]
-
Устная работа
Задача 2. На рисунке изображен график производной функции y=f(x)на промежутке (-5;6). -5 х 1 6 5 2 -1 у -построить эскиз графика функции: Проверь себя
-
Эскиз графика функции y=f(x)
-5 y x 6 5 2 -1
-
Устная работа
Задача3. Найти асимптоты графика функции Проверь себя
-
Ответ
х=2 – вертикальная асимптота у=х – наклонная асимптота
-
Самостоятельная работа учащихся
Класс делится на 3 группы. Каждая группа учащихся получает задание на карточке. Первая группа – задание базового уровня. Вторая группа – задание основного уровня. Третья группа – задание продвинутого уровня. Задание: Исследовать функцию с помощью производной и построить ее график. Исследовав функцию с помощью производной и построив ее график на листе бумаги, учащиеся сканируют свою работу и сохраняют ее на Smart – доске. Осуществляют самопроверку с помощью программы МаthCAD. Уровни
-
Уровни
базовый уровень основной уровень продвинутый уровень
-
Задание группе 1
Базовый уровень: Исследовать функцию и построить ее график у = x4 – 8x2 Проверь себя Назад Справка
-
Задание группе 2
Основной уровень: Исследовать функцию и построить ее график Проверь себя Назад Справка
-
Задание группе 3
Продвинутый уровень: Исследовать функцию и построить ее график Проверь себя Назад Справка
-
Вспомните план исследования:
1.Область определения функции. 2.Множество значений функции. 3.Чётность. 4.Периодичность. 5.Первая производная: по ней определяются участки монотонности и точки экстремума. 6.Вторая производная: по ней определяются участки выпуклости и вогнутости и точки перегиба. 7.Точки пересечения с осями координат. 8.Таблица значений. . Назад
-
1.Область определения функции. 2.Множество значений функции. 3.Чётность. 4.Периодичность. 5.Первая производная: по ней определяются участки монотонности и точки экстремума. 6.Вторая производная: по ней определяются участки выпуклости и вогнутости и точки перегиба. 7.Точки пересечения с осями координат. 8.Таблица значений. . Назад
-
1.Область определения функции. 2.Множество значений функции. 3.Чётность. 4.Периодичность. 5.Первая производная: по ней определяются участки монотонности и точки экстремума. 6.Вторая производная: по ней определяются участки выпуклости и вогнутости и точки перегиба. 7.Точки пересечения с осями координат. 8.Таблица значений. . Назад
-
Проверь себя
Замечаем, что функция четная и ее график симметричен оси ОУ, достаточно исследовать ее на интервале от 0 до +∞ . Данные исследования заносим в таблицу: График
-
Посмотрите в MathCAD(е).
-
Ответить, используя график, на вопросы: 1. Сколько критических точек имеет функция ? 2. Чему равна точка минимума ? 3. Чему равен минимум функции ? 4. Чему равна точка максимума ? 5. Чему равен максимум функции ? 6. При каком наименьшем натуральном значении а уравнение f(x)=a имеет одно решение ? 7. При каком наибольшем целом значении а это уравнение имеет 3 решения ? 8. При каких значениях а уравнение имеет 2 решения ? 9. Есть ли значения а, при которых уравнение не имеет корней ? Ответы: Дополнительное задание: Посмотрите в MathCAD(е).
-
Ответить, используя график, на вопросы: 1. Сколько критических точек имеет функция ? ( 3 ) 2. Чему равна точка минимума ? ( 1 ) 3. Чему равен минимум функции ? ( - 2 ) 4. Чему равна точка максимума ? ( - 1 ) 5. Чему равен максимум функции ? ( 2 ) 6. При каком наименьшем натуральном значении а уравнение f(x)=a имеет одно решение ? ( а = 3 ) 7. При каком наибольшем целом значении а это уравнение имеет 3 решения ? (а = 1) 8. При каких значениях а уравнение имеет 2 решения ? ( - 2 и 2) 9. Есть ли значения а, при которых уравнение не имеет корней ? ( нет ) Дополнительное задание:
-
Ответить по графику на вопрос: «Сколько решений имеет уравнение у = а в зависимости от параметра а ?»
Дополнительное задание: Ответ Посмотрите в MathCAD(е).
-
Ответ:
Если а = ± 4, то одно решение. Если |а|> 4, то два решения. Если -4
-
Обобщение
Графики функций можно строить «по точкам». Однако при таком способе построения можно пропустить важные особенности графика. Можно строить график функции с помощью преобразований: сдвига прямой на а единиц; растяжения прямой от точки О с коэффициентом k; центральной симметрии относительно точки О; симметрии относительно оси абсцисс и оси ординат. А можно строить график методом исследования функции с помощью производной. Ход урока Далее
-
Итог
Вот что сказал Декарт по поводу методов: «Под методом же я разумею точные и простые правила, строгое соблюдение которых всегда препятствует принятию ложного за истинное, и без излишней траты умственных силах, но постепенно и непрерывно увеличивая знания, способствует тому, что ум достигает истинного познания всего, что доступно.» Далее Методы математического анализа позволяют строить достаточно точный график заданной функции, если только удается хорошо изучить свойства этой функции.
-
Математика развивалась стремительно, но без понятия производной многие исследования не имели смысла. В 1679 году Пьер Ферма находил экстремумы функции, касательные, наибольшие и наименьшие значения функций. Но в своих записях он использовал сложнейшую символику Виета, и поэтому эти исследования не привели к созданию теории интегральных и дифференциальных исчислений. В 1736 году Исаак Ньютон получил теорию интегральных и дифференциальных исчислений методом флюксий (производных). Но вся теория была осмыслена с точки зрения физики. Математики хотели строгих логических обоснований. Современник Ньютона Лейбниц предложил новый подход к математическому анализу. Он ввёл обозначения дифференциала, интеграла, функции, такие понятия как ордината, абсцисса, координата. Но в его теории было много “тёмных мест”. И вот в 18 веке величайший математик Леонард Эйлер создал теорию дифференциальных и интегральных исчислений, и в таком виде она изучается и по сей день. Историческая справка Ход урока Далее
-
Исследуя функцию с помощью производной, я научился находить : Область определения функции; Определять четность функции; Критические точки и выделять из них точки экстремума; Промежутки монотонности функции; Точки перегиба; Промежутки выпуклости; Строить график функции Рефлексия Ответив на вопросы, оцените свои умения.
-
Спасибо за урок
До свидания!!! Удачи вам!!!
-
Литература Программы для общеобразовательных школ, гимназий, лицеев. Математика, 5-11 классы; М. : Дрофа 2004. Н.Я. Виленкин, О.С. Ивашев-Мусатов, С.И. Шварцбурд . Алгебра и математический анализ 11. Учебник для углубленного изучения математики в общеобразовательных учреждениях. М.: Мнемозина, 2005. И.Н. Галицкий. Дидактические материалы по алгебре для 10 класса, учебное пособие для учащихся школ и классов с углубленным изучением математики. М.: Просвещение, 1998. И.Н. Галицкий и др. Методическое пособие для учителя «Углубленное изучение алгебры и математического анализа в 10 классе». М.: Просвещение, 2000.
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.