Содержание
-
Теорема Виета
Франсуа Виет (1540–1603) родился во Франции. Разработал почти всю элементарную алгебру; ввёл в алгебру буквенные обозначения и построил первое буквенное исчисление.
-
Формулировка
Если x1иx2 – корни квадратного уравнения x2+px+q=0, то x1+x2=-p, а x1∙x2=q. С помощью теоремы Виета можно выразить коэффициенты квадратного уравнения через его корни.
-
Доказательство
Мы знаем, что при D≥0корни приведённого квадратного уравнения находятся по формуле . . Теперь выполним алгебраические преобразования – и теорема Виета доказана:
-
Обратим внимание
Ещё одно интересное соотношение – дискриминант уравнения равен квадрату разности его корней: D=(x1-x2)2.
-
Посмотрим на теорему Виета в действии
Приведённое квадратное уравнение x2-7x+10=0имеет корни 2 и 5. Их сумма равна 7, а произведение 10. Мы видим, что сумма корней равна второму коэффициенту с противоположным знаком, а произведение свободному члену.
-
Список литературы
Энциклопедия «Математика» издательство «Аванта+». Подготовил Медведев Максим.
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.