Презентация на тему "Логарифм" 11 класс

Презентация: Логарифм
1 из 42
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
5.0
2 оценки

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Посмотреть и скачать презентацию по теме "Логарифм" по математике, включающую в себя 42 слайда. Скачать файл презентации 3.28 Мб. Средняя оценка: 5.0 балла из 5. Для учеников 11 класса. Большой выбор учебных powerpoint презентаций по математике

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    42
  • Аудитория
    11 класс
  • Слова
    алгебра
  • Конспект
    Отсутствует

Содержание

  • Презентация: Логарифм
    Слайд 1

    Определение логарифма. Основное логарифмическое тождество.Учитель: Белоусова Елена Николаевна

    Алгебра 11 класс 5klass.net

  • Слайд 2

    Цель урока:

    Дать определение логарифма и основного логарифмического тождества Показать полезность применения логарифмов; Научить видеть знакомое в незнакомом, развить интерес к истории математики и её приложениям.

  • Слайд 3

    Задача 1

    Найдите положительный корень уравнения х2 = 9 х3 = 8 х4 = 81 ответ : х=3 ответ : х=3 ответ : х=2

  • Слайд 4

    Задача 2

    Решите уравнение 2х=8 3х=27 5х =25 ответ: х=3 ответ: х=3 ответ: х=2

  • Слайд 5

    Определение логарифма

    Логарифмом положительного числа bпо основанию а>0 и а 1 называется показатель степени, в которую нужно возвести число а, чтобы получить число b. Логарифм с произвольным основанием.

  • Слайд 6

    Основное логарифмическое тождество

    Действие нахождения логарифма числа называется логарифмированием

  • Слайд 7

    Вычислите

    loq3 27= loq5 125= loq2 2= loq8 1= loq216= loq3 9= 3 loq3 18= loq0,50,25= loq2х= 3 7loq73=

  • Слайд 8

    Вычислите

    loq41= loq1313= loq3х=2 6loq6 12= loq4х=2 loq2 х=5 loq1313= loq3х=2 5loq5 12= loq91=

  • Слайд 9

    Вычислите самостоятельно

    loq33= loq216= loq2х=3 3loq3 18= loq22= loq2 64= loq1515= loq3х=2 4loq4 12= loq91=

  • Слайд 10

    Логари́фм - от греч. λόγος — «слово», «отношение» и ἀριθμός — «число», «показатель»

    Поистине безграничны приложения показательной и логарифмической функций в самых различных областях науки и техники, а ведь придумывали логарифмы для облегчения вычислений. Через четыре года будет четыре столетия с того дня, как в 1614 году были опубликованы первые логарифмические таблицы, составленные Джоном Непером. Они помогли астрономам и инженерам, сокращая время на вычисления, и тем самым, как сказал знаменитый французский ученый Лаплас, «удлиняли жизнь вычислителям». Логарифмическая разминка «Немного истории».

  • Слайд 11

    Логарифмическая разминка «Немного истории».

    Параллельно с Непером над составлением таблицы логарифмов работал другой любитель математики - Йост Бюрги. Он был швейцарским часовщиком и мастером астрономических приборов. Бюрги составил таблицы логарифмов раньше, но только в 1620 году издал свою книгу "Таблицы арифметической и геометрической прогрессии с обстоятельным наставлением, как пользоваться ими при всякого рода вычислениях". Йост Бюрги (1552 - 1632)

  • Слайд 12

    В 1623 г., т. е. всего через 9 лет после издания первых таблиц, английским математиком Эдмундом Гантером была изобретена первая логарифмическая линейка, ставшая рабочим инструментом для многих поколений вплоть до появления ЭВМ.

  • Слайд 13

    Логарифмическая линейка

    1622 год - Первый вариант линейки разработал английский математик-любитель Уильям Отред

  • Слайд 14

    1630 год -Ричард Деламейн создаёт круговую логарифмическую линейку.

  • Слайд 15

    Англичанин Роберт Биссакар (и независимо от него в 1657 году — С.Патридж) разработал прямоугольную логарифмическую линейку, конструкция которой в основном сохранилась до наших дней.

  • Слайд 16

    Однако в начале XXI века логарифмические линейки получили второе рождение в наручных часах. Дело в том, что, следуя моде, производители дорогих и престижных марок часов перешли от электронных хронометров с ЖК-экранами к стрелочным и места для встраиваемого калькулятора оказалось недостаточно. Однако спрос на хронометры со встроенным вычислительным устройством среди следящих за модой людей заставил производителей часов выпустить модели с встроенной логарифмической линейкой, выполненной в виде вращающихся колец со шкалами вокруг циферблата. По прихоти производителей такие устройства обычно называются «навигационная линейка». Их достоинство — можно сразу, в отличие от микрокалькулятора, получить таблицу (например, расхода топлива на пройденное расстояние, перевода миль в километры и т. п.).

  • Слайд 17

    Логарифмическая спираль «Удивительное рядом»

    Спираль – это плоская кривая линия, многократно обходящая одну из точек на плоскости, которая называется полюсом спирали.

  • Слайд 18

    Архимедова спираль Гиперболическая спираль

  • Слайд 19

    Логарифмическая спираль является траекторией точки, которая движется вдоль равномерно вращающейся прямой, удаляясь от полюса со скоростью, пропорциональной пройденному расстоянию. Т.о. в логарифмической спирали углу поворота пропорционален логарифм этого расстояния.

  • Слайд 20

    Первым ученым, открывшим эту удивительную кривую, был французский математик Рене Декарт (1596-1650гг.) Самое интересное и удивительное в том, что логарифмическая спираль возникает в нашей жизни в связи с самыми разными природными формами.

  • Слайд 21

    По логарифмическим спиралям выстраиваются цветки в соцветиях подсолнечника

  • Слайд 22

    По логарифмическим спиралям выстраиваются рога многих животных

  • Слайд 23

    Живые существа обычно растут, сохраняя общее очертание своей формы. При этом они растут чаще всего во всех направлениях - взрослое существо и выше и толще детеныша. Но раковины морских животных могут расти лишь в одном направлении.

  • Слайд 24

    По логарифмической спирали свёрнуты раковины многих улиток и моллюсков.

  • Слайд 25
  • Слайд 26

    Логарифмическая спираль «Удивительное рядом»

    По логарифмической спирали формируется тело циклона

  • Слайд 27

    Даже пауки, сплетая паутину, закручивают нити вокруг центра по логарифмической спирали.

  • Слайд 28

    улитка Человеческое ухо – это маленькое чудо! Улитка является органом, воспринимающим звук, в котором самой природой заложена ЛОГАРИФМИЧЕСКАЯ СПИРАЛЬ!

  • Слайд 29

    Траектории насекомых летящих на свет также описывают логарифмическую спираль. ************************** Логарифмическая спираль единственная из спиралей не меняет своей формы при увеличении размеров. Видимо, это свойство и послужило причиной того, что в живой природе логарифмическая спираль встречается чаще других.

  • Слайд 30

    По логарифмическим спиралям закручены многие галактики, в частности Галактика, которой принадлежит Солнечная система.

  • Слайд 31

    И эту спираль мы повсюду встречаем: к примеру, ножи в механизме вращая.В изгибе трубы мы ее обнаружим  – турбины тогда максимально послужат!

  • Слайд 32

    Очертания, выраженные логарифмической спиралью, имеют не только раковины. Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д.

  • Слайд 33

    Испуганное стадо северных оленей разбегается по спирали.

  • Слайд 34

    Спиралью закручиваются ураганы и смерчи

  • Слайд 35

    Молекула ДНК закручена двойной спиралью.

  • Слайд 36

    «Логарифмы в музыке»

    Музыканты редко увлекаются математикой; большинство из них питают к этой науке чувство уважения. Между тем, музыканты - даже те, которые не проверяют подобно Сальери у Пушкина («алгеброй гармонию»), - встречаются с математикой гораздо чаще, чем сами подозревают, и притом с такими «страшными» вещами, как логарифмы.

  • Слайд 37

    Звезды, шум и логарифмы

    Этот заголовок связывает столь, казалось бы, несоединимые вещи. Шум и звезды объединяются здесь потому, что громкость шума и яркость звезд оцениваются одинаковым образом - по логарифмической шкале.

  • Слайд 38
  • Слайд 39

    Любимая цифра

    Возьмите, пожалуйста, ручки и запишите свою любимую цифру. Умножьте эту цифру на 9. Полученное число умножьте на 12345679 . Если вы все сделали правильно, то у Вас получится букет из ваших любимых цифр. А теперь припишите справа к полученному числу 9 нулей. Пусть у вас будет столько счастливых дней!!!

  • Слайд 40

    Определение логарифма

    Логарифмом числа b>0 по основанию а>0 и а 1 называется показатель степени, в которую нужно возвести число а, чтобы получить число b.

  • Слайд 41

    Спасибо за урок!!!

  • Слайд 42

    Березин С. И. Счётная логарифмическая линейка. Богомолов Н. В. Практические занятия с логарифмической линейкой. — М.: Высшая школа, 1977. — 103 с. (Сборник задач. Допущено Министерством высшего и среднего специального образования СССР в качестве учебного пособия для техникумов.) Кобозев Н. Н. Логарифмическая линейка. Панов Д. Ю. Счётная линейка. — 21-е изд. — М.: Наука, 1973. — 168 с. Семендяев К. А. Счётная линейка. — 11-е изд. — М.: Физматгиз, 1960. — 48 с. Хренов Л. С., Визиров Ю. В. Логарифмическая линейка. — 1968. http://ru.wikipedia.org/wiki/Логарифмическая_линейка

Посмотреть все слайды

Сообщить об ошибке