Презентация на тему "Методы решения уравнений" 11 класс

Презентация: Методы решения уравнений
Включить эффекты
1 из 25
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Смотреть презентацию онлайн с анимацией на тему "Методы решения уравнений" по математике. Презентация состоит из 25 слайдов. Для учеников 11 класса. Материал добавлен в 2021 году.. Возможность скчачать презентацию powerpoint бесплатно и без регистрации. Размер файла 0.33 Мб.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    25
  • Аудитория
    11 класс
  • Слова
    алгебра
  • Конспект
    Отсутствует

Содержание

  • Презентация: Методы решения уравнений
    Слайд 1

    МБОУ Платоновская СОШ

    Тема урока: Методы решения уравнений Учитель Филонова Л.И.

  • Слайд 2

    Развитие и образование ни одному человеку не могут быть даны и сообщены. Всякий, кто желает к ним приобщиться, должен достигнуть этого собственной деятельностью, собственными силами, собственным напряжением. Извне он может получить только возбуждение. А. Дистервег

  • Слайд 3

    1. Проверка домашнего заданияЗадание: выбрать верный ответ и в соответствие поставить букву

  • Слайд 4

    Логико-смысловая модель «Уравнения»

  • Слайд 5

    х4 + 3х 2 – 4 = 0

    log2 (2x - 3) = log2 (3x - 6) 2*4х – 5*2х +2 = 0 7 х-2 = ( ) х+5 х3 - 9х 2 + 20х = 0 log4 (x + 3) – log4 (x – 1) = 2 – log4 8 1 4 5 6 7 8 9 10 2 3

  • Слайд 6

    Цели урока: Тема урока: Методы решения уравнений Цели урока: обобщить и систематизировать знания о методах решения уравнений; научиться осуществлять выбор метода решения уравнения закрепить навыки использования того или иного метода при решении уравнений;

  • Слайд 7

    Метод разложения на множители Общие методы решения уравнений: Функционально- графический метод Нетрадиционные методы Замена уравнения h(f(х))=h(g(х)) уравнением f(х)=g(х) Метод введения новой переменной

  • Слайд 8

    Замена уравнения более простым уравнением

    Суть метода: от уравнения вида h(f(х))=h(g(х)) осуществить переходк уравнению вида f(х)=g(х)

  • Слайд 9

    Метод применяется:

    При решении показательных уравнений: f(x)=g(x) При решении логарифмических уравнений: При решении иррациональных уравнений: f(x)=g(x) f(x)=g(x)

  • Слайд 10

    Метод применяется: Метод нельзя использовать:

    если функция монотонная f(x)=g(x) Например: (2x+3)3=(5x-9)3 2x+3=5x-9 x=4 Ответ: 4 если функция периодическая Например, sin (3x-1) = sin (3x+4) если функция четная Например, (2x+7)2 = (5x-12)2

  • Слайд 11

    х4 + 3х 2 – 4 = 0

    log2 (2x - 3) = log2 (3x - 6) 2*4х – 5*2х +2 = 0 7 х-2 = ( ) х+5 х3 - 9х 2 + 20х = 0 log4 (x + 3) – log4 (x – 1) = 2 – log4 8 1 4 5 6 7 8 9 10 2 3

  • Слайд 12

    log2 (2x - 3) = log2 (3x - 6) 2*4х – 5*2х +2 = 0 7 х-2 = ( ) х+5 х3 - 9х 2 + 20х = 0 log4 (x + 3) – log4 (x – 1) = 2 – log4 8 1 4 5 6 7 8 9 10 2 3

  • Слайд 13

    log2 (2x - 3) = log2 (3x - 6)

    7 х-2 = ( ) х+5 log4 (x + 3) – log4 (x – 1) = 2 – log4 8 х4 + 3х 2 – 4 = 0 х3 - 9х 2 + 20х = 0 2*4х – 5*2х +2 = 0 2 9 1 3 6 7 8 10 4 5 Замена уравнения h(f(х))=h(g(х)) уравнением f(х)=g(х)

  • Слайд 14

    Метод разложения на множители:

    Суть метода: уравнение f(x)g(x)h(x)=0 можно заменить совокупностью уравнений: f(x)=0 ; g(x)=0; h(x)=0. Решив уравнения этой совокупности, нужно взять те их корни, которые принадлежат области определения исходного уравнения, а остальные отбросить как посторонние. Например,

  • Слайд 15

    log2 (2x - 3) = log2 (3x - 6)

    7 х-2 = ( ) х+5 log4 (x + 3) – log4 (x – 1) = 2 – log4 8 х4 + 3х 2 – 4 = 0 х3 - 9х 2 + 20х = 0 2*4х – 5*2х +2 = 0 2 9 1 3 6 7 8 10 4 5 Замена уравнения h(f(х))=h(g(х)) уравнением f(х)=g(х)

  • Слайд 16

    7 х-2 = ( ) х+5 log4 (x + 3) – log4 (x – 1) = 2 – log4 8 х4 + 3х 2 – 4 = 0 х3 - 9х 2 + 20х = 0 2*4х – 5*2х +2 = 0 2 9 6 8 1 7 3 10 4 5 Замена уравнения h(f(х))=h(g(х)) уравнением f(х)=g(х) Метод разложения на множители

  • Слайд 17

    Метод введения новой переменной:

    Страница 377 учебника Ответьте на вопрос: В чем суть данного метода? Какие риски существуют при использовании данного метода?

  • Слайд 18

    Суть метода: ввести новую переменную u = g(x). Решить уравнение относительно новой переменной u. Вернуться к переменной x и решить совокупность уравнений : g(x)=u1 ; g(x)=u2… g(x)=uп. гдеu1, u2, uп - корни уравнения замены

  • Слайд 19

    log2 (2x - 3) = log2 (3x - 6)

    7 х-2 = ( ) х+5 log4 (x + 3) – log4 (x – 1) = 2 – log4 8 х4 + 3х 2 – 4 = 0 х3 - 9х 2 + 20х = 0 2*4х – 5*2х +2 = 0 2 9 6 8 1 7 3 10 4 5 Замена уравнения h(f(х))=h(g(х)) уравнением f(х)=g(х) Метод разложения на множители

  • Слайд 20

    7 х-2 = ( ) х+5 log4 (x + 3) – log4 (x – 1) = 2 – log4 8 х4 + 3х 2 – 4 = 0 х3 - 9х 2 + 20х = 0 2*4х – 5*2х +2 = 0 2 9 6 8 1 7 3 10 4 5 Замена уравнения h(f(х))=h(g(х)) уравнением f(х)=g(х) Метод разложения на множители Метод введения новой переменной

  • Слайд 21

    Умение решать задачи - практическое искусство, подобное плаванью или катанию на лыжах, или игре на фортепиано: научиться этому можно, лишь постоянно тренируясь. Д. Пойа

  • Слайд 22

    Задание:Найти все значения х, при каждом из которых произведение выражений равно нулю.

  • Слайд 23

    Решите уравнения:

  • Слайд 24

    Оцените свой уровень усвоения материала. Ответьте на вопросы: что у меня получается хорошо? над чем предстоит еще работать?

  • Слайд 25

    Домашнее задание:

    п. 56 учебника (пп1,2,3), заполнить опорный конспект для метода разложения на множители, метода ведения новой переменной №*1692а, 1686а

Посмотреть все слайды

Сообщить об ошибке