Презентация на тему "Применение формул сокращенного умножения"

Презентация: Применение формул сокращенного умножения
Включить эффекты
1 из 18
Ваша оценка презентации
Оцените презентацию по шкале от 1 до 5 баллов
  • 1
  • 2
  • 3
  • 4
  • 5
0.0
0 оценок

Комментарии

Нет комментариев для данной презентации

Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.


Добавить свой комментарий

Аннотация к презентации

Интересует тема "Применение формул сокращенного умножения"? Лучшая powerpoint презентация на эту тему представлена здесь! Данная презентация состоит из 18 слайдов. Также представлены другие презентации по математике. Скачивайте бесплатно.

  • Формат
    pptx (powerpoint)
  • Количество слайдов
    18
  • Слова
    алгебра
  • Конспект
    Отсутствует

Содержание

  • Презентация: Применение формул сокращенного умножения
    Слайд 1

    Применение формул сокращённого умножения

    pptcloud.ru

  • Слайд 2

    Примеры основных формул сокращённого умножения:

    (a + b)² = a² + 2ab + b² (a – b)² = a² – 2ab + b² a² – b² = (a – b)(a + b) a³ + b³ = (a + b)(a² – ab + b²) a³ – b³ = (a – b)(a² + ab + b²) (a + b)³ = a³ + 3a²b + 3ab² + b³ (a – b)³ = a³ – 3a²b + 3ab² – b³ А также:

  • Слайд 3

    Исторические сведения

    Формулы сокращённого умножения были известны еще 4000 лет назад. Ученые Древней Греции представляли величины не числами или буквами, а отрезками прямых. Вместо «произведение a и b» говорилось «прямоугольник, содержащийся между а и в», вместо а² - «квадрат на отрезке а».

  • Слайд 4

    Евклид «Начала»

  • Слайд 5

    «Если отрезок как-либо разбит на два отрезка, то площадь квадрата, построенного на всем отрезке, равна сумме площадей квадратов, построенных на каждом из двух отрезков, и удвоенный площади прямоугольника, сторонами которого служат эти два отрезка». Суть этой фразы в формуле: (a + b)² = a² + 2ab + b² a b a b a b

  • Слайд 6

    Применение формул сокращённого умножения:

    в алгебре в геометрии

  • Слайд 7

    Разложение многочленов на множители

    (a² + 1)² – 4a² = ((a² + 1) – 2a)((a² + 1) + +2a) = (a² + 1 – 2a)(a² + 1 + 2a) = (a² – 2a + +1)(a² + 2a + 1) = (a - 1)²(a + 1)² a² – b² – a – b = (a – b)(a + b)–(a + b) =(a + + b)(a – b – 1) В разложении данных многочленов использовались формулы: разность квадратов квадрат разности квадрат суммы

  • Слайд 8

    Представление выражения в виде многочлена

    Представить в виде многочлена . . Представить в виде многочлена . Ответ: Ответ:

  • Слайд 9

    Решение уравнения

    (x – 2)³ + (x + 2)³ = 2(x – 3)(x² + 3x + 9) x³ – 6x² + 12x – 8 + x³ + 6x² + 12x + 8 = 2(x³ – 27) 2x³ + 24x = 2x³ – 54 24x = - 54 x = - 2,25 1 способ В решении данного уравнения первым способом использовались формулы: 1) куб разности 2) куб суммы

  • Слайд 10

    (x – 2)³ + (x + 2)³ = 2(x – 3)(x² + 3x + 9) (x-2+x+2)((x-2)² - (x-2)(x+2) + (x+2)² = 2(x³-27) 2x(x² – 4x + 4 – x² + 4 + x² + 4x +4) = 2x³ – 54 2x(x² + 12) = 2x³ – 54 2x³ + 24x – 2x³ = - 54 24x = - 54 x = - 2,25 2 способ В решении данного уравнения вторым способом использовались формулы: 1) сумма кубов; 2) квадрат разности; 3) квадрат суммы; 4) разность квадратов.

  • Слайд 11

    Доказательство неравенства

    Доказать неравенство: , что верно.

  • Слайд 12

    Делимость

    Докажем, что число n³ – n, где n – натуральное число, делится на 6: n³ – n = n(n² – 1) = n(n – 1)(n + 1) Заданное число есть произведение трёх последовательных чисел, из которых одно обязательно делится на 3 и хотя бы одно делится на 2. Если произведение делится и на 3, и на 2, то оно делится и на 6.

  • Слайд 13

    Тождественные преобразования

    Докажем тождество: . , , . Итак, с помощью тождественных преобразований с применением формул сокращённого умножения мы левую часть равенства привели к виду правой его части. Тождество доказано.

  • Слайд 14

    Задача Пифагора

    «Всякое нечётное число, кроме единицы, есть разность двух квадратов». Решение: n – натуральное число (n + 1)² – n² = (n + 1 – n)(n + 1 + n) = 2n + 1 2n + 1 – нечётное число

  • Слайд 15

    Геометрическая задача

    C A1 В прямоугольном параллелепипеде длина на 5 см больше ширины и на 5 см меньше высоты. Площадь поверхности равна 244 см². Найдите измерения параллелепипеда (длину, ширину, высоту). A B D B1 C1 D1 C A1

  • Слайд 16

    Пусть x см – AB(длина), тогда (x+5) cм – AA1(высота), (x-5) см – AD(ширина). S = 2SABCD + 2SAA1D1D + 2SAA1B1B, а по условию – 244 см² SABCD = x(x-5); SAA1D1D = (x-5)(x+5); SAA1B1B = x(x+5) Составим и решим уравнение: 2x(x-5) + 2(x-5)(x+5) + 2x(x+5) = 244 x(x-5) + (x-5)(x+5) + x(x+5) = 122 x² – 5x + x² – 5² + x² + 5x = 122 3x² = 122+25 3x² = 147 x² = 49, x > 0 (по смыслу задачи) x = 7 A B C D B1 A1 C1 D1

  • Слайд 17

    AB = 7 см – длина AA1 = 7 см + 5 см = 12 см – высота AD = 7 см – 5 см = 2 см – ширина A B C D B1 A1 C1 D1 Ответ: 7 см; 12 см; 2 см.

  • Слайд 18

    Спасибо за внимание. Презентацию подготовили: Плеханова Полина, Уткина Екатерина 8 «А» класс, ГОУ гимназия №144

Посмотреть все слайды

Сообщить об ошибке