Содержание
-
Подготовка к ЕГЭ геометрия
Леонтьева Е.В. МБОУ «Вечерняя (сменная)
общеобразовательная школа г Горно-Алтайска»
2015-2016
-
задачи
1) Диаметр основания конуса 30, длина образующей 17.
Найдите высоту конуса.
2) Диаметр основания конуса равен 20, высота – 24. Найдите длину образующей конуса.
3) В прямоугольном параллелепипеде АВСДА1В1С1Д1
известны длины рёбер: ВВ1=3, А1В1=6, А1Д1= 2. Найдите
длину диагонали ВД1.
4) В правильной четырехугольной пирамиде сторона основания равна 6, а длина бокового ребра 33 . Найдите
высоту пирамиды.
5) Точка О – центр основания правильной четырехугольной пирамиды SABCD с вершиной S, SO=32, SC=68. Найдите длину отрезка АС.
6) Объем цилиндра равен 12. Чему равен объем конуса, который имеет такое же основание и такую же высоту, как и данный цилиндр?
-
ответы
-
1) Диаметр основания конуса 30, длина образующей 17. Найдите высоту конуса.
Решение:
30: 2 =15
с2 = а 2+ в2
17 2= 152 + h2
h2 = 289 – 225 = 64
h = 8
Ответ : 8
-
2) Диаметр основания конуса равен 20, высота – 24. Найдите длину образующей конуса.
Решение:
20: 2 =10
с2 = а 2+ в2
L 2= 10 2 + 242
L 2 = 100 + 576 = 676
L = 26
Ответ : 26
-
3) В прямоугольном параллелепипеде АВСДА1В1С1Д1известны длины рёбер: ВВ1=3, А1В1=6, А1Д1= 2.Найдите длину диагоналиВД1.
Решение:
d 2= а2 + в2 + c 2
d 2 = 32 + 62 + 22
d 2 = 9 + 36 + 4 = 49
d = 7
Ответ : 7
-
4) В правильной четырехугольной пирамиде сторона основания равна 6, а длина бокового ребра 33 . Найдите высоту пирамиды.
Решение:
с2 = а 2+ в2
d2= 62 + 62 =72
d = 62
d : 2 = 62 :2 = 32
h2 = (33)2 – (32)2=
h2=27 – 18=9
h = 3
Ответ : 3
-
5) Точка О – центр основания правильной четырехугольной пирамиды SABCD с вершиной S, SO=32, SC=68. Найдите длину отрезка АС.
Решение:
с2 = а 2+ в2
682= 322 + АО2
АО2 = 4624 – 1024
АО2 =3600
АО =60
АС = 120
Ответ : 120
-
6) Объем цилиндра равен 12. Чему равен объем конуса, который имеет такое же основание и такую же высоту, как и данный цилиндр?
Решение:
Vцилиндра > V конуса
в 3 раза
12: 3 =4
Ответ : 4
Нет комментариев для данной презентации
Помогите другим пользователям — будьте первым, кто поделится своим мнением об этой презентации.